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Abstract

We consider the class, Cp, of all zero mean stationary Gaussian processes, {Yt : t ∈ (−∞,∞)}

with p derivatives, for which the vector valued process {(Y (0)
t , . . . , Y

(p)
t ) : t ≥ 0} is a p+1-vector

Markov process, where Y (0)
t = Y (t). We provide a rigorous description and treatment of these

stationary Gaussian processes as limits of stationary AR(p) time series.
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1. Introduction

In many data-driven applications in both the natural sciences and in finance, time series data

are often discretized prior to analysis and are then formulated using autoregressive models. The

theoretical and applied properties of the convergence of discrete autoregressive (“AR”) processes

to their continuous analogs (continuous autoregressive or “CAR” processes) has been well studied

by many mathematicians, statisticians, and economists; see, e.g., [1, 2, 4, 8, 12]. For references

on stochastic differential equations, which underlie the theory of CAR processes, we refer to

[6, 7, 14, 15].
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A special class of autoregressive processes are the discrete-time zero-mean stationary Gaus-

sian Markovian processes on R. The continuous time analogs of these processes are documented

in Chapter 10 of [11] and in pages 207–212 of [13]. For processes in this class, the sample paths

possess p − 1 derivatives at each value of t, and the evolution of the process following t depends

in a linear way only on the values of these derivatives at t. Notationally, we term such a process as

a member of the class Cp. For convenience, we will use the notation CAR(p) = Cp. The standard

Ornstein–Uhlenbeck process is of course a member of C1, and hence CAR(p) processes can be

described as a generalization of the Ornstein–Uhlenbeck process.

It is well understood that the Ornstein–Uhlenbeck process is related to the usual Gaussian

AR(1) process on a discrete-time index, and that an Ornstein–Uhlenbeck process can be described

as a limit of appropriately chosen AR(1) processes; see [7]. In an analogous fashion we show that

processes in Cp are related to AR(p) processes and can be described as limits of an appropriately

chosen sequence of AR(p) processes.

Of course, there is also extensive literature on the weak convergence of discrete-time time

series processes, particularly that of ARMA and GARCH processes. For example, Duan [5] con-

siders the diffusion limit of an augmented GARCH process and Lorenz [9] discusses (in Chapter 3)

limits of ARMA processes. However, to the best of our knowledge, none of these references (nor

simplifications of their results) discuss how to correctly approximate Cp by discrete AR(p) pro-

cesses, and thus this is the goal of our paper.

Section 2 begins by reviewing the literature on CAR(p) processes, recalling three equivalent

definitions of the processes in Cp. Section 3 discusses how to correctly approximate Cp by discrete

AR(p) processes. Appendix A contains the proof of our main result, Theorem 3.2.

2. Equivalent descriptions of the class Cp

There are three distinct descriptions of processes comprising the class Cp, which are documented

on p. 212 of [13] but in different notation. On pp. 211–212, Rasmussen and Williams [13] prove

that these descriptions are equivalent ways of describing the same class of processes. The first

description matches the heuristic description given in the introduction. The remaining descriptions

provide more explicit descriptions that can be useful in construction and interpretation of these

2



processes. In all the descriptions Y = {Y (t) : t ∈ [0,∞)} symbolizes a zero-mean Gaussian

process on [0,∞).

In the present paper we use the first of the three equivalent descriptions in [13], as follows.

Let Y be stationary. The sample paths are continuous and are p − 1 times differentiable, a.e., at

each t ∈ [0,∞) (The derivatives at t = 0 are defined only from the right. At all other values of t,

the derivatives can be computed from either the left or the right, and both right and left derivatives

are equal). For each i ∈ {1, . . . , p − 1}, we denote the ith derivative at t by Y (i)(t). At any

t0 ∈ (0,∞), the conditional evolution of the process {Y (t) : t ∈ [0, t0]} depends in a linear way

only on the set of values {Y (i)(t0) : i ∈ {0, . . . , p−1}}. The above can be formalized as follows:

let {(Y (0)
t , . . . , Y

(p−1)
t ) : t ≥ 0} denote the values of a mean zero Itô vector diffusion process

defined by the system of equations

dY
(i−1)
t = Y

(i)
t dt, t > 0, i = 1, . . . , p− 1

dY
(p−1)
t =

p−1∑
i=0

ai+1Y
(i)
t dt+ σdWt

(2.1)

for all t > 0, where Wt is the Wiener process, σ > 0. Then let Y (t) = Y
(0)
t .

2.1. Characterization of stationarity via (2.1)

The system in (2.1) is linear. Stationarity of vector-valued processes described in such a way has

been studied elsewhere; see in particular Theorem 5.6.7 on p. 357 in [7]. The coefficients in (2.1)

that yield stationarity can be characterized via the characteristic polynomial of the matrix Λ, where

|Λ− λI| is

λp − apλp−1 − · · · − a2λ− a1 = 0. (2.2)

The process is stationary if and only if all the roots of Eq. (2.2) have strictly negative real parts.

In order to discover whether the coefficients in (2.1) yield a stationary process it is thus nec-

essary and sufficient to check whether all the roots of Eq. (2.2) have strictly negative real parts. In

the case of C2 the condition for stationarity is quite simple, namely that a1, a2 should lie in the

quadrant a1 < 0, a2 < 0. The covariance functions for C2 can be found in [11], p. 326. For higher
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order processes the conditions for stationarity are not so easily described. Indeed, for C3 it is

necessary that a1 < 0, a2 < 0, a3 < 0 simultaneously, but the set of values for which stationarity

holds is not the entire octant. For larger p one needs to study the solutions of the higher order

polynomial in Eq. (2.2).

3. Weak convergence of the h-AR(2) process to CAR(2) process

3.1. Discrete time analogs of the CAR processes

We now turn our focus to describing the discrete time analogs of the CAR processes and the

expression of the CAR processes as limits of these discrete time processes. In this section, we

discuss the situation for p = 2. Define the h-AR(2) processes on the discrete time domain domain

{0, h, 2h, . . .} via

Xt = bh1Xt−h + bh2Xt−2h + ςhZt, (3.1)

with Zt ∼ IIDN (0, 1) for all t = 2h, 3h, . . . The goal is to establish conditions on the coefficients

bh1 , bh2 and ςh so that these AR(2) processes converge to the continuous time CAR(2) process as in

the system of equations given in (2.1). We then discuss some further features of these processes.

To see the similarity of the h-AR(2) process in (3.1) with the CAR(2) process of (2.1), we

introduce the corresponding h-VAR(2) processes ∆h
0;t, ∆h

1;t defined via

∆h
0;t −∆h

0;t−h = h∆h
1;t,

∆h
1;t −∆h

1;t−h = (ch1∆h
0;t−h + ch2∆h

1;t−h)h+ ξhZt

(3.2)

with Zt ∼ IID N (0, 1) for all t = h, 2h, . . . and

Pr{(∆h
0;0,∆

h
1;0) ∈ Γ} = νh2 (Γ) for all Γ ∈ B(R2), (3.3)

where νh2 is a probability measure on (R2,B(R2)) for the Borel σ-algebra B(R2). We assume also

that as h ↓ 0, (∆h
0;0,∆

h
1;0) converges in distribution to a random variable pair (∆0

0;0,∆
0
1;0) with

probability measure ν02 on (R2,B(R2)). The above assumptions for the initial distribution follow

Assumption 3 of [10] as well as the discretized process defined by (2.22)–(2.24) therein.
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From (3.2) we see that

∆h
0;t = ∆h

0;t−h + h∆h
1;t

= ∆h
0;t−h + h∆h

1;t−h + (ch1∆h
0;t−h + ch2∆h

1;t−h)h2 + ξhhZt

= (2 + ch1h
2 + ch2h)∆h

0;t−h − (1 + ch2h)∆h
0;t−2h + ξhhZt.

This shows that the h-AR(2) process of (3.1) is equivalent to the h-VAR(2) in (3.2) with

bh1 , ch1h
2 + ch2h+ 2, bh2 , −ch2h− 1, ςh , ξhh, (3.4)

or, equivalently,

ch1 , h−2(bh1 + bh2 − 1), ch2 , h−1(−1− bh2), ξh , h−1ςh. (3.5)

In Theorems 3.1 and 3.2, we consider weak convergence in the same sense as that of [10]; see

footnote 7 on p. 13 therein.

Theorem 3.1. Consider a sequence of h-AR(2) processes of (3.1) with coefficients given by (3.4),

where chj → aj 6= 0 for j = 1, 2 and ξh/
√
h → σ as h ↓ 0. We also assume that as h ↓ 0,

(∆h
0;0,∆

h
1;0) converges in distribution to a random variable pair (∆0

0;0,∆
0
1;0) with probability

measure ν02 on (R2,B(R2)). Then the sequence of h-AR(2) processes of (3.1) converges in distri-

bution to the CAR(2) process of (2.1), where {Wt : t ≥ 0} is a one-dimensional Brownian motion,

independent of
(
Y0, Y

(1)
0

)
, and Pr{(Y0, Y (1)

0 ) ∈ Γ} = ν02(Γ) for any Γ ∈ B(R2).

Proof. This proof is a special case of Theorem 3.2 and is thus omitted.

Remark 3.1. Theorems 2.1 and 2.2 in [10] are explicitly stated for real-valued processes but ap-

ply to vector-valued processes as well. One only needs to explicitly allow the processes to be

vector-valued, and to write the regularity conditions to allow for the full cross-covariance of the

vector-valued observations, rather than just ordinary covariance functions. Our processes are much

better behaved than the most general type of process considered in [10] since our error variance

is constant (depending only on h) and our distributions are Gaussian, and hence very light tailed.

Thus both of Theorems 2.1 and 2.2 in [10] apply.
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Remark 3.2. Theorem 3.1 motivates the following question: what happens when a given CAR(2)

process is sampled? This question is resolved in [3], which found that a sampled CAR(2) process

gives rise to an ARMA (2,1) process.

3.2. Weak convergence of h-AR(p) process to CAR(p) process

We now consider the AR(p) process on the discrete time domain {0, h, 2h, . . .}, given as

Xt = bh1Xt−h + · · ·+ bhpXt−ph + ςhZt, (3.6)

where Zt ∼ IID N (0, 1) for all t = ph, (p + 1)h and show that subject to suitable conditions on

the coefficients bh1 , . . . , b
h
p and ςh, this converges as h ↓ 0 to its continuous time CAR(p) process

of the form

Y
(p)
t =

p−1∑
i=0

ai+1Y
(i)
t + σWt, t > 0 (3.7)

where aj 6= 0 for all j ∈ {1, . . . , p} and σ2 > 0.

Define the coefficients {chj : j = 1, . . . , p} and ζh through the equations

bhi , (−1)i−1

{(
p

i

)
+

p∑
k=i

(
k − 1

i− 1

)
hp−k+1chk

}
, ςh , hp−1ξh. (3.8)

The following theorem is proven in the Appendix.

Theorem 3.2. Consider the h-AR(p) process of (3.6) with coefficients given by (3.8), where chj →

aj 6= 0 for all j ∈ {1, . . . , p} and ξh/
√
h → σ as h ↓ 0, We further assume that as h ↓

0, (∆h
0;0, . . . ,∆

h
p−1;0) converges in distribution to (∆0

0;0, . . . ,∆
0
p−1;0) with probability measure

ν0p on (Rp,B(Rp)). Then the h-AR(p) process of (3.6) converges in distribution to the CAR(p)

process of (3.7), where {Wt : t ≥ 0} is a one-dimensional Brownian motion, independent of

(Y0, Y
(1)
0 , . . . , Y

(p−1)
0 ), and Pr{(Y0, Y (1)

0 , . . . , Y
(p−1)
0 ) ∈ Γ} = ν0p(Γ) for any Γ ∈ B(Rp).

It is of interest to note the scaling for the Gaussian variable Zt in (3.6). In order to have the

desired convergence, one must have ζh/(σ
√
h)→ 1 and via (3.8) this entails ζh/(σhp−1/2)→ 1.
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Appendix A

This Appendix proves Theorem 3.2. To do so, we first study the similarity of the h-AR(p)

process in (3.6) with the CAR(p) process (3.7). We begin by introducing the corresponding h-

VAR(p) process

∆h
0;t −∆h

0;t−h = h∆h
1;t, . . . , ∆h

p−2;t −∆h
p−2;t−h = h∆h

p−1;t, (A.1)

from which one gets, through iteration,

∆h
p−1;t −∆h

p−1;t−h = h

p−1∑
i=0

chi+1∆
h
i;t−h + ξhZt,

with Zt ∼ IID N (0, 1) for all t = h, 2h, . . . and

Pr{(∆h
0;0, . . . ,∆

h
p−1;0) ∈ Γ} = νhp (Γ) for all Γ ∈ B(Rp), (A.2)

νhp being a probability measure on (Rp,B(Rp)) for the Borel σ-algebra B(Rp). For i = 1, the

process of (A.1) immediately yields

h∆h
1;t−h = ∆h

0;t−h −∆h
0;t−2h =

(
1

0

)
(−1)0∆h

0;t−h +

(
1

1

)
(−1)1∆h

0;t−2h.

For i = 2, the process of (A.1) immediately yields

h2∆h
2;t−h = h(∆h

1;t−h −∆h
1;t−2h)

=

(
2

0

)
(−1)0∆h

0;t−h +

(
2

1

)
(−1)1∆h

0;t−2h +

(
2

2

)
(−1)2∆h

0;t−3h.

The process of (A.1) generalizes as follows: for all i ∈ {1, . . . , p− 1},
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hi∆h
i;t−h =

i+1∑
k=1

(
i

k − 1

)
(−1)k−1∆h

0;t−kh. (A.3)

We now prove (A.3) via mathematical induction. For i = 1 the relationship (A.3) holds

trivially. Let (A.3) hold for i = m. It is now straightforward to show that (A.3) also holds for

i = m+ 1. Furthermore, for i = 1, it follows from (A.1) that ∆h
0;t = ∆h

0;t−h + h∆h
1;t. For i = 2,

it follows from (A.1) that

∆h
0;t = ∆h

0;t−h + h(∆h
1;t−h + h∆h

2;t) (A.4)

= ∆h
0;t−h + h∆h

1;t−h + h2∆h
2;t = · · · =

p−2∑
i=0

hi∆h
i;t−h + hp−1∆h

p−1;t

=

p−2∑
i=0

hi∆h
i;t−h + hp−1

(
∆h

p−1;t−h + h

p−1∑
i=0

chi+1∆
h
i;t−h + ξhZt

)

=

p∑
k=1

(−1)k−1

{(
p

k

)
+

p∑
i=k

(
i− 1

k − 1

)
hp−i+1chi

}
∆h

0;t−kh + hp−1ξhZt,

which, when compared with the h-AR(p) process of (3.6), yields the relationships

bhi , (−1)i−1

{(
p

i

)
+

p∑
k=i

(
k − 1

i− 1

)
hp−k+1chk

}
, ςh , hp−1ξh (A.5)

for all i ∈ {1, . . . , p}. From above, the h-AR(p) process of (3.6) with coefficients given by (3.8)

is equivalent to the h-VAR(p) of (A.1).

We shall next find the coefficients ch1 , . . . , c
h
p in terms of the coefficients bh1 , . . . , b

h
p . In partic-

ular, we have that, from (3.8), when i = p, that

bhp = (−1)p−1

{(
p

p

)
+

(
p− 1

p− 1

)
h chp

}
, chp = h−1

{
(−1)p−1

(
p− 1

p− 1

)
bhp − 1

}
.
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When i = p− 1,

bhp−1 = (−1)p−2


(

p

p− 1

)
+

p∑
k=p−1

(
k − 1

p− 2

)
hp−k+1chk

 ,

chp−1 = h−2

[
(−1)p−2

{(
p− 2

p− 2

)
bhp−1 +

(
p− 1

p− 2

)
bhp

}
− 1

]
.

This leads to the following general formula.

Proposition A.1. For all i ∈ {1, . . . , p}, one has

chi = h−p+i−1

{
(−1)i−1

p∑
k=i

(
k − 1

i− 1

)
bhk − 1

}
. (A.6)

Proof. We prove Proposition A.1 by backward induction. (i) For i = p the relationship (A.6)

holds trivially. (ii) Let (A.6) hold for every i ∈ {p− 1, p− 2, . . . ,m+ 1}. (iii) We shall show that

(A.6) also holds for i = m. For i = m, one has

bhm = (−1)m−1

{(
p

m

)
+

p∑
i=m

(
i− 1

m− 1

)
hp−i+1chi

}

and hence it follows from (i) and (ii) that

(−1)m−1bhm =

(
p

m

)
+ hp−m+1chm

+ (−1)m−1bhm

p∑
i=m+1

(
i− 1

m− 1

)
(−1)i−1

p∑
k=i

(
k − 1

i− 1

)
bhk −

p∑
i=m+1

(
i− 1

m− 1

)
.

Interchanging the order of summation in the double sum, the former index bounds i ≤ k ≤ p

and m+ 1 ≤ i ≤ p have now become m+ 1 ≤ i ≤ k and m+ 1 ≤ k ≤ p . We further have

p∑
i=m+1

(
i− 1

m− 1

)
(−1)i−1

p∑
k=i

(
k − 1

i− 1

)
bhk =

p∑
k=m+1

bhk

(
k − 1

m− 1

) k−m∑
j=1

(−1)j+m−1

(
k −m
j

)

= (−1)m
p∑

k=m+1

bhk

(
k − 1

m− 1

)
,
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as well as

p∑
i=m+1

(
i− 1

m− 1

)
=

p∑
i=m+1

{(
i

m

)
−
(
i− 1

m

)}
=

(
p

m

)
− 1.

The last relationship yields

(−1)m−1bhm =

(
p

m

)
+ hp−m+1chm + (−1)m

p∑
k=m+1

bhk

(
k − 1

m− 1

)
−
{(

p

m

)
− 1

}
,

hp−m+1chm = (−1)m−1
p∑

k=m

bhk

(
k − 1

m− 1

)
− 1,

concluding part (iii) and thus the proof.

Finally, for t > 0 we know that

dYt = Y
(1)
t dt, dY

(1)
t = Y

(2)
t dt, . . . , dY

(p−2)
t = Y

(p−1)
t dt, (A.7)

and from (3.7) we have also that

dY
(p−1)
t = {a1Yt + a2Y

(1)
t + · · ·+ apY

(p−1)
t }dt+ σdWt. (A.8)

Thus the CAR(p) process of (3.7) is equivalent from (A.7) and (A.8) to the system of stochastic

differential equations in (2.1).

We are now ready to prove Theorem 3.2.

Proof. We prove Theorem 3.2 by proving that it suffices to show that the h-VAR(p) process

of (A.1) converges to the SDEs system of (2.1). We employ the framework of Theorems 2.1

and 2.2 of [10]. Let Mt be the σ-algebra generated by ∆h
i;0,∆

h
i;h,∆

h
i;2h, . . . ,∆

h
i;t−h, for i =

0, . . . , p − 2, and ∆h
p−1;0,∆

h
p−1;h,∆

h
p−1;2h, . . . ,∆

h
p−1;t for t = h, 2h, . . . The h-VAR(p) process

of (A.1) is clearly Markovian of order 1, since we may construct ∆h
0;t,∆

h
1;t,∆

h
2;t, . . . ,∆

h
p−1;t from

∆h
0;t−h,∆

h
1;t−h,∆

h
2;t−h, . . . ,∆

h
p−1;t−h by constructing first ∆h

p−1;t from the last equation of (A.1),

∆h
p−2;t from (A.1) for i = p − 1, and so forth, and then finally ∆h

0;t from (A.1) for i = 1. This

also establishes that the set {∆h
i;t : i ∈ {0, . . . , p − 2}} is Mt-adapted. Thus the corresponding
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drifts per unit of time conditioned on information at time t are given, for all i ∈ {1, . . . , p − 1},

by

E

{
∆h

i−1;t −∆h
i−1;t−h

h

∣∣∣∣Mt

}
= E

{
∆h

i−1;t−h + h∆h
i;t −∆h

i−1;t−h

h

∣∣∣∣Mt

}
= ∆h

i;t (A.9)

and

E

{
∆h

p−1;t+h −∆h
p−1;t

h

∣∣∣∣Mt

}
= ch1∆h

0;t + · · ·+ chp∆h
p−1;t, (A.10)

where the second inequality holds by the last equation of (A.1)

Furthermore, the variances and covariances per unit of time are respectively given, for all

i ∈ {1, . . . , p− 1}, by

E

{
(∆h

i−1;t −∆h
i−1;t−h)2

h

∣∣∣∣Mt

}
= h

(
∆h

i;t

)2
, (A.11)

and

E

{
(∆h

p−1;t+h −∆h
p−1;t)

2

h

∣∣∣∣Mt

}
= (ch1∆h

0;t + · · ·+ chp∆h
p−1;t)

2h+

(
ξh
)2
h

, (A.12)

where the last equality assumes that Zt+h ∼ IID N (0, 1). By the same logic, one has, for all

i, j ∈ {1, . . . , p− 1} with i 6= j,

E

{
(∆h

i−1;t −∆h
i−1;t−h)(∆h

j−1;t −∆h
j−1;t−h)

h

∣∣∣∣Mt

}
= h∆h

i;t ∆h
j;t, (A.13)

and

E

{
(∆h

i−1;t −∆h
i−1;t−h)(∆h

p−1;t+h −∆h
p−1;t)

h

∣∣∣∣Mt

}
= h∆h

i;t(c
h
1∆h

0;t + · · ·+ chp∆h
p−1;t). (A.14)

Therefore, the relationships of (A.11)–(A.14) are such that, for all i, j ∈ {1, . . . , p−1}with i 6= j,
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E

{
(∆h

i−1;t −∆h
i−1;t−h)2

h

∣∣∣∣Mt

}
= o(1), (A.15)

E

{
(∆h

p−1;t+h −∆h
p−1;t)

2

h

∣∣∣∣Mt

}
=

(
ξh
)2
h

+ o(1), (A.16)

E

{
(∆h

i−1;t −∆h
i−1;t−h)(∆h

j−1;t −∆h
j−1;t−h)

h

∣∣∣∣Mt

}
= o(1) (A.17)

and

E

{
(∆h

i−1;t −∆h
i−1;t−h)(∆h

p−1;t+h −∆h
p−1;t)

h

∣∣∣∣Mt

}
= o(1), (A.18)

where the o(1) terms vanish uniformly on compact sets.

We can then define the continuous time version of the h-VAR(p) process of (A.1) by ∆h
i;t ,

∆h
i;khfor kh ≤ t < (k+1)h and all i ∈ {0, . . . , p−1}. Thus, according to Theorem 2.2 in [10], the

relationships (A.9)–(A.10) and (A.15)–(A.18) provide the weak limit diffusion. This is precisely

the linear SDE system of (2.1) and it has a unique solution with the asserted initial distribution.
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CARMA processes. Stochastic Processes and their Applications, 119, 2660–2681.

[4] Brockwell, P.J. & Lindner, A. (2010). Strictly stationary solutions of autoregressive moving

average equations. Biometrika, 97, 765–772.

12



[5] Duan, J.-C. (1997). Augmented GARCH (p, q) process and its diffusion limit. Journal of

Econometrics, 79, 97–127.

[6] Durrett, R. (1996). Stochastic Calculus: A Practical Introduction. CRC Press, Boca Raton,

FL.

[7] Karatzas, I. & Shreve, S. (2012). Brownian Motion and Stochastic Calculus. Springer, New

York.

[8] Kirshner, H., Unser, M. & Ward, J.P. (2014). On the unique identification of continuous-

time autoregressive models from sampled data. IEEE Transactions on Signal Processing,

62, 1361–1376.

[9] Lorenz, R. (2006). Weak Approximation of Stochastic Delay: Differential Equations with

Bounded Memory by Discrete Time Series. Doctoral Dissertation, Humboldt Universität zu

Berlin, Germany.

[10] Nelson, D. B. (1990). ARCH models as diffusion approximations. Journal of Econometrics,

45, 7–38.

[11] Papoulis, A. (1984). Probability, Random Variables and Stochastic Processes. McGraw-Hill,

New York.

[12] Pham, D.-T. (2000). Estimation of continuous-time autoregressive model from finely sam-

pled data. IEEE Transactions on Signal Processing, 48, 2576–2584.

[13] Rasmussen, C.E. & Williams, C. (2006). Gaussian Processes for Machine Learning. MIT

Press, Cambridge, MA.

[14] Resnick, S.I. (2013). Adventures in Stochastic Processes. Springer, New York.

[15] Rogers, L.C.G. & Williams, D. (2000). Diffusions, Markov Processes, and Martingales,

Volume I. Cambridge University Press, Cambridge.

13


	Introduction
	Equivalent descriptions of the class Cp
	Characterization of stationarity via (2.1)

	Weak convergence of the h-AR(2) process to CAR(2) process
	Discrete time analogs of the CAR processes
	Weak convergence of h-AR(p) process to CAR(p) process 


